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ABSTRACT

Head-Related Transfer Function (HRTF) individualization is
critical for immersive and realistic spatial audio rendering in
augmented/virtual reality. Neither measurements nor simu-
lations using 3D scans of head/ear are scalable for practical
applications. More efficient machine learning approaches are
being explored recently, to predict HRTFs from ear images or
anthropometric features. However, it is not yet clear whether
such models can provide an alternative for direct measure-
ments or high-fidelity simulations. Here, we aim to address
this question. Using 3D ear shapes as inputs, we explore the
bounds of HRTF predictability using deep neural networks.
To that end, we propose and evaluate two models, and identify
the lowest achievable spectral distance error when predicting
the true HRTF magnitude spectra.

Index Terms— AR/VR, spatial audio, 3D volume repre-
sentation, 3D CNN, 3D residual U-Net

1. INTRODUCTION

Head-related impulse responses parameterize the transforma-
tions applied by the head (and ear) surface geometry on the
acoustic signals as they enter the left and right ear canals.
Their magnitude spectra are the head-related transfer func-
tions (HRTFs), and along with interaural time differences,
encode the information required for spatial audio perception.
Since ear structures are unique to every individual, personal-
izing HRTFs is necessary for building robust/immersive aug-
mented/virtual reality (AR/VR) systems. In principle, one can
measure HRTFs acoustically, or synthesize them by numeri-
cal simulations on high-resolution 3D scans [1], for each in-
dividual. However, both these approaches are logistically and
computationally expensive, and thus non-scalable for large
populations of users – an obstacle to AR/VR applications. Al-
ternatively, in the past decade, great efforts have been made
to estimate HRTF individualization systems in a data-driven
manner using machine learning approaches.

Typically HRTF prediction models use ear anthropomet-
ric features or ear images as inputs [2, 3, 4, 5], to either select

*The work was done while Yaxuan Zhou was a research intern at Face-
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an approximate HRTF from a database or synthesize a person-
alized HRTF using features of the target individual. Recently,
deep networks were used to train a mapping from different
ear representations to HRTF [6, 7, 8, 9]. Human-in-the-loop
setups have also been proposed where subjects provide feed-
back during inference stage and the predicted HRTF is ad-
justed accordingly [10]. For a brief survey on HRTF personal-
ization procedures, please refer to [1]. These prediction meth-
ods are constrained by the generality of the HRTF database,
as well as whether HRTF and anthropometric features can be
mapped to each other in some metric space.

Although several prediction models were proposed, many
inherent problems are still not answered. First, the represen-
tational power of different ear inputs is not well understood.
Most previous methods utilize the aforementioned ear-related
inputs and euclidean loss functions, e.g. spectral distance er-
ror in log-magnitude domain. Specifically, anthropometric
keypoints are usually selected empirically and labeled man-
ually, and there is no compelling evidence yet that they can
predict HRTF with high accuracy. Using 2D ear images for
HRTF prediction also has limitations. The color images are
often limited by viewing angles and self-occlusions. A recent
study shows that some signal in HRTF cannot be extracted
from anthropometric features or ear images [11].

Second, machine learning models (deep learning specif-
ically) are data hungry, and current HRTF databases may
be too small. Several research groups have built HRTF
databases from acoustic measurements [12, 13, 14, 15, 16],
with the largest database featuring 120 subjects [13]. Since
the measurement setups are generally different, these may not
be combined into a single uniform dataset. Alternatively, two
databases used approx. 1000 synthetic ear shapes to simulate
HRTFs [17, 18]. These are susceptible to domain discrep-
ancy between synthesized ear shapes and actual human ear
shapes (because the span of simulated ear shapes might be
different from the span/manifold of HRTFs). Another recent
open-sourced dataset of simulated HRTFs (from 3D scan of
subjects) [19] also has small size (96 subjects).

Our main goal is to explore the limits of HRTF pre-
dictability with ear-related input representations. We use
a larger dataset, and we build and evaluate deep neural
networks (DNN) with 3D point cloud ear representations,
thereby establishing a lower bound of HRTF estimation error
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with such highly informative (and costly) inputs. We propose
and evaluate two models for this purpose.

2. HRTF PREDICTION FROM EAR SHAPES

2.1. Dataset & Data Representation

We utilize HRTFs from 645 human subjects for this study.
Artec 3D scanners are used to obtain 3D meshes of head and
upper torso for these subjects. Extensive quality checks with
repeated measurements are performed to ensure< 1mm mesh
representational errors. The left-ear and right-ear HRIRs on
a 1-meter sphere are simulated using the acquired 3D mesh
with finite-difference time-domain (FDTD) method. Simula-
tions were validated by comparing to acoustic measurements.
The resulting far-field HRTF magnitude spectra are gam-
matone smoothed (ERB-filter) with 40 center frequencies
located between 650Hz and 16KHz. Since low frequency
content in HRTFs does not contain notches/peaks and sim-
ulations at high frequencies are noisy, we focus on the 30
frequencies in 1− 12KHz. HRTFs are simulated on a spatial
grid with 10◦ resolution in both azimuth ∈ [0◦, 360◦) and
elevation ∈ [−90◦, 90◦]. However, without loss of generality,
we restrict the evaluations to 10 elevations ∈ [−30◦, 60◦].

The input left and right ear meshes are cropped and cen-
tered around the ear canal entrance. We voxelize them into
volume data facilitating the DNN construction. Each mesh
would correspond to a 3D tensor with equal size along each
dimension. We use three different 3D tensor sizes: 163, 323

and 643, which correspond to 5.6mm, 2.8mm and 1.4mm per
voxel respectively. [20] showed that scan precision of approx.
4mm is sufficient to maintain overall spectral shape of simu-
lated HRTF (although 163 setting is just above this threshold,
we use it to investigate models’ representative capacity). The
left ear-HRTF pair and right ear-HRTF pair are used as sepa-
rate data points. We mirror all right ear-HRTF pairs to form
new left ear-HRTF pairs, which increases the dataset size to a
total of 1290 ear-HRTFs pairs for evaluations.

2.2. DNN Models

HRTF prediction is a regression problem. Recall from Section
2.1 that the HRTF has 360 directions and 30 frequency bins,
and our input is 3D tensor. We propose two different DNN
architectures that map the 3D ear tensor to the correspond-
ing HRTF parameterized by 30× 360 magnitude values. The
networks are illustrated in Figure 1. Both models allow for
joint predictions of HRTFs across directions, and they differ
in terms of the hidden representational space.

CNN-Reg: This network comprises of a cascade of blocks,
each of which contains convolution layers, batch normaliza-
tion and ELU non-linearity layers as shown in Figure 1(a).
Output from the last such block is fed into an adaptive average

(a) Network architecture of CNN-Reg

(b) Network architecture of UNet-Reg

Fig. 1. Network architecture of (a) CNN-Reg and (b) UNet-
Reg. D: voxel dimension; C×/C÷: increasing/reducing chan-
nels; K: kernel size; S: stride; P: padding; CONV: 3D conv
layer with K=3, S=1, P=1; BN: batch norm; ELU: ELU ac-
tivation; AVGPOOL: adaptive average pooling; MAXPOOL:
3D maxpooling with K=2, S=2, P=0; FC: fully connected;
DECONV: transpose conv layer with K=3, S=2, P=1.

pooling layer, followed by a fully connected layer. This last
layer is a major bottleneck for network size; and so instead of
jointly predicting all the 30 frequency bins and all 360 direc-
tions, we train 30 separate networks, one per frequency bin.
While reducing the network size, this allows us to check the
influence of frequency-dependent simulations errors on the
model performance (as we will discuss later in Section 3).

UNet-Reg: Recall that HRTFs are inherently spherical, i.e.,
they can be represented as a 3D volume across directions. Ex-
isting works on classifying spherical inputs like [21, 22], al-
though partly relevant, do not directly apply for our problem
of regression over spherical domain outputs (HRTF) from vol-
umetric inputs (ear shape). Hence, as an alternative to CNN-
Reg, we propose 3D UNet inspired by [23, 24] to map 3D
inputs to 3D outputs. Similar to CNN-Reg, we also train one
UNet-Reg per frequency. Figure 1(b) shows the network ar-
chitecture, and it captures several unique aspects of HRTF
prediction. First, observe that unlike the conventional UNet,
there is no direct voxel-to-voxel correspondence between in-
puts and outputs as the HRTF values only exist on a spherical
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surface. Thus we define a spherical surface in the 3D out-
put tensor, and from that sphere, we pick 360 values with the
selected azimuths/elevations as stated in Section 2.1 to repre-
sent HRTF values at 360 directions. This design also allows
for scaling up HRTF prediction on denser spatial grids with-
out increase in computational overhead. We can also define
multiple smaller concentric spheres in the 3D output tensor to
include near-field HRTF predictions. Second, the spatial up-
sampling operation in UNet captures the hypothesis that ears
and HRTFs can jointly be modeled as over-parameterized hid-
den representations (possibly the intrinsic manifold on which
the spatial audio signals reside). This also implies that the
information sharing across directions in UNet-Reg vs. CNN-
Reg would be different.

Spectral distance error (SDE), defined below, is used
as the loss function for backpropagation. ĥ(θ, ϕ, f) and
h(θ, ϕ, f) are the predicted and ground-truth (simulated)
HRTF magnitudes at azimuth θ, elevation ϕ and a frequency
bin centered at f . Nd is the total number of directions.

SDE(f ) =
1

Nd

∑
θ,ϕ

∣∣∣∣20 log ĥ(θ, ϕ, f )

h(θ, ϕ, f )

∣∣∣∣ (1)

3. EXPERIMENTS

CNN-Reg and UNet-Reg are evaluated using 1290 HRTF-ear
pairs (800/200/290 for training, validation and testing) and
a 5-fold cross validation was done. Both left and mirrored-
right HRTF-ear pairs from a given subject are included in
only one of training, validation or testing to avoid any over-
lap. For optimization, we used Adam with variable learn-
ing rate (0.1, decaying eventually to 0.0001), batch size of
30, and 100 epochs. Exhaustive validation of hyperparam-
eters is done and we are reporting the best outcomes. We
use two baselines: a simulated HRTF on KEMAR dummy
head (denoted by genHRTF), and a population average of
HRTFs from across training/validation sets (denoted by pop-
avg). Since overly simple models underfit and predict aver-
age output for all inputs, we use pop-avg to evaluate the effi-
cacy of models in learning useful information. We also com-
pare CNN-Reg and UNet-Reg with existing HRTF prediction
pipelines. All the models are implemented in PyTorch.

CNN-Reg & UNet-Reg vs. pop-avg & genHRTF: Figure
2 summarizes the frequency-dependent SDE (with mean and
s.d. across directions and subjects in top and bottom plots re-
spectively). Overall, our proposed methods significantly out-
perform the genHRTF at all frequencies, clearly asserting the
need for individualized prediction of HRTFs. In lower fre-
quencies, CNN-Reg, UNet-Reg predict as well as pop-avg.
This makes sense because, for such large wavelengths, indi-
vidual differences in fine-grained ear structures do not affect
the HRTF spectrum estimation, and so the models are learn-

ing to predict an average. In mid-range frequencies (e.g.,
3 − 12kHz), CNN-Reg and UNet-Reg significantly outper-
form pop-avg by at least 1dB, indicating that they are extract-
ing useful features from the input space compared to the pop-
ulation average. CNN-Reg slightly outperforms UNet-Reg.
However, UNet-Reg has several advantages. Firstly, UNet-
Reg has fewer network parameters (35k vs. 17m for CNN-
Reg) leading to a smaller footprint during inference. Sec-
ondly, UNet-Reg’s volumetric output allows for a more in-
tuitive/interpretable network design, especially for prediction
over denser spatial grid of directions (including near field).

SDE vs. frequencies & directions: Observe that, in Fig-
ure 2, the SDE deviation over subjects (bottom) is larger than
deviation over directions (top), indicating that HRTF signals
have higher variance across subjects, than across directions
for a given subject. Also, SDE deviation across subjects in-
creases at higher frequencies (bottom) while the deviation
across directions decreases (top), implying the simulation er-
ror at high frequencies may be subject-specific.

To further understand the frequency dependence, we first
noticed from ground truth that magnitudes at higher frequen-
cies have larger variance (across subjects) than those at lower
frequencies. This is also seen in SDE trends which generally
increase (almost monotonically) from low to high frequencies
for all models. Second, we also observe that the ground truth
HRTF magnitudes on ipsilateral directions have smaller vari-
ance than those on contralateral directions (which in our case
are the areas around azimuth = 270◦). Even more so, the vari-
ance of HRTF magnitude almost always monotonously de-
creases as elevation angle increases from bottom to the top.
Following this variance trend, Figure 3 shows that CNN-Reg
performs better in ipsilateral, above-horizontal regions and
between 1.5 − 7kHz. To eliminate this influence of chang-

Fig. 2. Mean and s.d of SDE vs. frequencies. (Top) s.d across
directions; (Bottom) s.d across subjects.
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ing variance across different frequencies/directions on model
performance, we normalized HRTFs to have zero mean and
unit variance on each frequency and direction and retrained
the network; but found no change in performance. Hence
we claim that the high SDE in the contralateral and below-
horizon directions may be mostly caused by non-ear-related
structures like chin or upper torso, which the model won’t be
able to learn from the ear shape input. And the high SDE at
higher frequencies is most likely caused by simulation error.

Fig. 3. SDE of CNN-Reg (with 323 grid) averaged over eleva-
tion (Top left) and azimuth (Top right). Bottom left, bottom
right are SDEs at elevation 0◦ and azimuth 0◦, respectively.

Are ear scans better for predicting HRTFs? As moti-
vated in Section 1, one of our goals is to establish predictabil-
ity bounds of HRTFs from high-resolution inputs like 3D
ear scans. To do this, we report our performance against the
proposals in Chen19 [9] and Zhang20 [11]. Zhang20 uses
a spatial principal component analysis (SPCA) for learning
HRTF basis embeddings, while Chen19 uses an encoder-
decoder for embedding HRTFs, and a DNN to predict the
embedding. Both use anthropometric features as inputs. Fig-
ure 2 (top) shows Zhang20 with respect to CNN-Reg and
UNet-Reg; clearly, HRTFs are better predicted via voxelized
meshes. Table 1 shows the mean SDE across frequencies.
Zhang20’s SDE is averaged over an overlapping set of fre-
quencies; and we use the same (see Figure 2 for range), while
Chen19’s SDE is averaged across 25 azimuths at 0◦ eleva-
tion and 173 frequencies within the range of 200 − 15kHz.
The datasets in these studies and ours are different, however,

trends in Table 1 indicate improvement in SDE achieved by
using highly-informative inputs.

Effect of voxelization: Table 2 shows the influence of in-
put sizes on performance. The mean SDE is averaged over
all frequencies and directions (s.d is across directions). CNN-
Reg and UNet-Reg achieve best SDEs (1.38 ± 0.38dB and
1.52 ± 0.41dB) with 323 and 643 voxel grids respectively.
Smaller grid of 163 increases error. Since overparameter-
ization may result in better network optimization, increas-
ing CNN-Reg’s size may reduce jump in error from 323 to
643 voxel grid; however this is not desirable because net-
work footprint increases rapidly. Since SDEs are generally
the same across changing input sizes, we can claim that CNN-
Reg and UNet-Reg learn useful information for HRTF predic-
tion, independent of these voxel grid sizes.

Table 1. SDEs of ear scans vs. anthropometric features.
Note: Zhang20 and Chen19 use different (smaller) dataset.

CNN-Reg UNet-Reg Zhang20∗ Chen19∗ genHRTF

SDE 1.67 1.84 3.24 3.43 3.63

Table 2. Mean SDE vs. input size (s.d across directions)
Input Grid 16× 16× 16 32× 32× 32 64× 64× 64

CNN-Reg 1.49± 0.36 1.38 ± 0.38 1.57± 0.43
UNet-Reg 1.61± 0.45 1.53± 0.38 1.52 ± 0.41

Comparison with numerical simulations: We asked in
Section 1 whether a DNN can replace the numerical simula-
tor. While accuracy was one factor, the per-subject inference
time is equally critical for scalable HRTF individualization.
While numerical simulation takes 20-30 mins per subject,
models’ inference takes tens of millisecs. CNN-Reg and
UNet-Reg both offer computationally effective alternatives to
simulations with an average tolerance of 1.38dB and 1.52dB
SDE in prediction. We do note that simulations themselves
are shown to have errors at high frequencies [25], and so
some of this error might be due to the noise in ground truth
data, rather than model’s incapacity in estimation. This also
relates to increasing SDE vs. frequency in Figures 2 and 3.
Also note that, our simulated HRTFs utilize meshes of torso
and head while our proposed methods only take ear shape as
input; possibly leading to the ‘floor’ of performance around
1dB in these plots.

4. CONCLUSION

We proposed two DNN models that predict HRTFs from 3D
ear tensors. We achieved highest prediction accuracy yet;
showing lower bounds of achievable errors using highly in-
formative ear shape inputs. Future work includes using per-
ceptual loss functions and improving model design.
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